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Introduction

The study of compound structure—activity relationships
(SARs“) is one of the central themes in medicinal chemistry.
SAR information is analyzed in different contexts, from
screening and hit-to-lead to lead optimization projects. For
the exploration of SARs, the concept of an activity landscape,
which integrates molecular similarity and potency informa-
tion, is of high relevance. The computational study of activity
landscapes is still an evolving field. Activity landscape models
are designed to rationalize SAR features of compound data
sets and select key compounds for chemical exploration.
The choice of molecular representations and the way molec-
ular similarity is assessed are critically important factors for
landscape generation and analysis. Graphical representation
of SAR features is a major focal point of landscape modeling.
Although complex activity landscapes are generally difficult
to analyze, much progress has recently been made in extract-
ing SAR information from various landscape views. This
Perspective aims to provide an overview of the state-of-the-
art in activity landscape analysis and a discussion of its
potential for medicinal chemistry applications.

Understanding how structural modifications affect the
biological activity of compounds or deriving a pharmaco-
phore hypothesis from diverse active chemical entities present
challenges that can be tackled using medicinal chemistry
experience and intuition and/or computational tools. By no
means is SAR analysis a priori dependent on computational
methods. Rather, SAR analysis is often carried out on paper
or whiteboards, by comparing molecular graphs of active
compounds, consistent with the way chemists are traditionally
trained. It has been pointed out that judgments of medicinal
chemists are naturally subjective and often inconsistent.! This
is of course not specific to medicinal chemistry but rather a
consequence of how we as individuals subjectively access and
evaluate data sets of any kind.! Likely inconsistencies in
individual judgments about chemical and biological data
might well be taken as an argument to promote the use of
computational methods for SAR analysis. However, it would
be rather careless to assume that computational analysis
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would per se be objective. In fact, computational objectivity
does not exist. We typically apply models with underlying
assumptions and inherent approximations that are often only
useful within relatively narrow applicability domains and the
results of which are generally difficult to evaluate.? In this
context, it is often overlooked that we can not model phenom-
ena whose physicochemical or biological foundations we do
not understand. Of course, calculations that are carried out
and reported should at least be reproducible (one would
hope), but reproducibility does not mean objectivity.

There is, however, a rather simple factor that generally
favors computational approaches to SAR analysis, and thatis
data set size. Aslong as one investigates one compound series
at a time, knowledge of chemical graphs and activity data
might be readily sufficient to deduce and predict SAR beha-
vior. However, as molecular data sets grow in size, we quickly
approach our limits to access and compare structures and
associated biological properties such that computational data
processing and analysis often become essential. Many com-
pound data sets that have accumulated in pharmaceutical
settings go far beyond the capacity of medicinal chemistry-
centric SAR analysis and require the application of specialized
computational tools for data handling and also modeling.
Again, given the model-based nature of computational SAR
analysis schemes, this does not make SAR analysis necessarily
more objective (than individual assessments), but it makes it
feasible.

Currently available computational approaches to SAR
analysis are multifaceted and of rather different methodolog-
ical complexity. A general distinction can be made between
methodologies that primarily help to access and visualize SAR
data obtained from screening®* or chemical optimization’
campaigns and those that ultimately predict biological activ-
ities. Among predictive methods, there are, for example,
approaches to model linear and nonlinear®” structure—activity
relationships, in particular, those based on the classical QSAR
paradigm,’ pharmacophore techniques,® and various machine
learning approaches.” Activity landscape methods, as intro-
duced in the following, add to this methodological spectrum a
strong focus on data-driven, descriptive, and large-scale SAR
analysis schemes. '’

The Activity Landscape Concept

The complexity and vastness of chemical space and the
biological relevance of small subspaces or “islands” have been
much discussed.'""'? In computational medicinal chemistry, we
do not have a unified space of the chemical universe available.
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Rather, computational chemical reference spaces must usually
be generated with the aid of numerical descriptors of chemical
structure and molecular properties,” which are in part rather
abstract formulations. There are many arbitrary and subjective
elements involved in chemical space design, and generally
applicable computational space representations do not exist.”
For activity prediction, the holy grail of computational space
design is activity relevance. A chemical reference space is
suitable for activity prediction if distance relationships between
test compounds correlate with their biological properties. This
means that compounds having similar activity should be close in
such chemical reference spaces but distant from inactive com-
pounds or other activity classes.

In the context of SAR analysis, activity landscape modeling
is carried out for sets of specifically active compounds having
different potency. Hence, in this case, requirements of chemi-
cal reference spaces differ from those utilized for activity
prediction in that distance relationships in chemical space
should predominantly reflect structural similarity.

In principle, however, derived chemical space is trans-
formed into an activity landscape by adding an activity
hypersurface to it that accounts for differences in compound
potency. The underlying concept is intrinsically simple. Com-
pound positions in chemical space are “decorated” with
potency information. Structurally similar compounds map
close to each other, structurally distinct compounds are far
apart, and all compound potency differences are reflected by
the activity hypersurface. Of course, in high-dimensional
space representations, we are unable to directly access and
interpret structure—potency relationships and hence a criti-
cally important aspect of activity landscape design is to
generate interpretable 2D or 3D representations of landscapes
for given data sets.

In general terms, we can define an activity landscape as any
representation that integrates the analyses of the structural
similarity of and potency differences between compounds shar-
ing the same biological activity. This definition covers rather
different types of landscape representations, as discussed in
the following.

Characteristic features of activity landscape analysis in-
clude its data-driven (what do available compound activity
data tell us?) and descriptive (rather than predictive) nature.'®
Informative activity landscape views should provide an
intuitive access to SAR information that might otherwise be
difficult to obtain, asillustrated in the following. Importantly,
activity landscape analysis will not replace chemical and
knowledge-based interpretation of SAR features but provide
an advanced basis for it.

Origins of Activity Landscape Modeling

The analysis of activity landscapes is conceptually related to
the study of general chemical “neighborhood behavior”,"?
i.e. the way calculated molecular similarity relates to the
biological activity of test compounds in quantitative terms.
Much of the early and pioneering work on activity landscapes was
carried out by Gerald M. (Gerry) Maggiora and his colleagues
at what was then Upjohn, and later on Pharmacia Corpora-
tion, in Kalamazoo, Michigan. In 2001, Shanmugasundaram
and Maggiora presented structure—activity similarity (SAS)
maps, a prototypic 2D activity landscape representation.'*
A schematic SAS map is shown in Figure 1. For a given set
of compounds, SAS maps compare structural similarity
and “activity similarity” on the basis of systematic pairwise
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Figure 1. SAS map. For all compound pairs within a data set,
structural similarity is plotted against activity similarity. Each data
point (colored dot) corresponds to a pairwise compound compar-
ison. Four regions of different SAR character can essentially be
distinguished in an SAS map. The upper-left section contains
structurally diverse compounds with similar activity and corre-
sponds to a scaffold hopping area, whereas the lower-right section
contains activity cliff-forming compound pairs, i.e. structurally
similar compounds with a significant difference in potency. The
color code of the data points adds a further level of information by
indicating whether the more active compound in a pair is highly
(blue), intermediately (yellow), or only weakly (red) potent. The
example shown represents a hypothetical compound data set.

compound comparisons. For this purpose, activity similarity is
defined for two compounds i and j as follows:

Pi= P

(1)

Simact(l-,j) = l_ﬁ
max min

Here P; gives the potency of compound i (for example, as
pK; or pICsp) and Ppax — Pmin the difference between the
maximum and minimum potency observed in the compound
set. For any compound pair, a normalized potency difference is
obtained and each data point in the SAS map represents a
pairwise compound comparison. Data points are color-coded
according to the potency value of the more active compound of
each pair. Compound similarity can be calculated in different
ways, as further discussed below. This type of similarity—
potency representation can be modified in many ways. For
example, compound potency differences can be plotted instead
of activity similarity and data points can be color-coded
according to the sum of compound potency values, taking into
account the potency range within the data sets."?

A key feature of an SAS map is that it can be understood to
consist of four sections capturing different principal features of
an activity landscape, as indicated in Figure 1. The upper-left
section is populated by compound pairs with high activity
similarity and low structural similarity. Thus, this region
corresponds to a “scaffold hopping”'® area where diverse
structures have similarly high or low activity. Here, only
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compounds with high potency are of significant interest. The
upper-right section of the map contains compound pairs with
high structural and high activity similarity. These compounds
might represent, for example, series of analogues with compar-
able potency. Less interesting are compound pairs falling into
the lower-left section having low structural and low activity
similarity. By contrast, compound pairs in the lower-right
region have high structural similarity but low activity similar-
ity. Hence, these are compounds, often series of analogues,
where small structural modifications lead to significant
changes in potency. In activity landscape terminology, high
structural—low activity similarity compound pairs are referred
to as “activity cliffs”, a designation that will become rather
intuitive when 3D landscape views are considered. Such
activity cliff regions are most difficult to navigate for many
(but not all) computational methods, which makes them
interesting from more than one point of view. In the relevant
literature, the term “activity cliff”” can be traced back to a book
chapter published in 1991 by Michael S. Lajiness,'” then a
colleague of Gerry Maggiora at Upjohn-Pharmacia.

Idealized 3D Activity Landscapes and Activity Cliffs

Maggiora and colleagues also realized early on the attrac-
tiveness of considering activity landscapes as topographical
maps reminiscent of actual geographical landscapes.'® These
maps correspond to theoretical 3D landscapes with idealized
topology, as shown in Figure 2. These idealized 3D activity
landscapes can be rationalized as a 2D projection of the
chemical space representation (x—y plane) with compound
potency added as a third dimension. In a landscape model, the
hypothetical potency value distribution is represented as a
contiguous surface (corresponding to a biological hypersur-
face in chemical space, as discussed above). Importantly, these
landscape models provide an intuitive access to fundamental
SAR characteristics. The model shown in Figure 2a contains
smooth and gently sloped regions, whereas the landscape in
Figure 2b contains rugged areas that represent activity cliffs.
On the basis of idealized 3D activity landscapes, it can be well
appreciated that activity cliff areas represent the most promi-
nent features of an activity landscape. Moreover, we can
deduce principal SAR characteristics from idealized land-
scape topology. In gently sloped rolling hill-like regions,
gradual structural changes are accompanied by only small
to moderate changes in compound potency, and increasingly
diverse structures fall within the same potency range. Hence,
these areas correspond to regions of “SAR continuity”.'>! In
principle, focusing on subsets of compounds populating such
regions makes scaffold hopping via virtual screening
methods’ a promising approach. Furthermore, linear model-
ing of SARs and activity predictions on the basis of linear
models, strongly depend on the presence of SAR continuity
among active compounds. In contrast to gently sloped areas
of activity landscapes, activity cliff regions correspond to
“SAR discontinuity”. Here, small changes in compound
structure are accompanied by large-magnitude changes in
potency. Accordingly, compound subsets populating activity
cliff regions severely limit the applicability of standard QSAR
models.”® The landscape shown in Figure 2c is a so-called
“variable activity landscape”.!” Such variable activity land-
scapes correspond to the presence of “SAR heterogeneity”,
i.e. the combination, or coexistence, of continuous and dis-
continuous SAR components.
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Figure 2. Hypothetical 3D activity landscapes. A 3D activity land-
scape adds potency as a third dimension to a set of compounds in a
2D projection of chemical reference space. Here potency distribu-
tions are hypothetical and three idealized hypersurfaces represent-
ing different SAR characters are shown: (a) SAR continuity,
(b) discontinuity, and (c) heterogeneity. In the 2D projection of
original chemical space, distances between compounds account for
their dissimilarity. From potency values of individual compounds
recorded on the vertical axis, a coherent surface must be generated
through interpolation.

Rationalizing SAR Information Content

The question of what represents SAR information is more
complicated to answer than it might appear at first glance.
Clearly, for a practicing medicinal chemist, useful SAR
information should reveal trends how to best make the next
molecule(s). Thus, the primary focus is on understanding
how structural modifications change compound potency in a
defined and, ultimately, predictable manner. However, this
essentially requires the presence of appreciable SAR continuity
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and contrasts with SAR information content from an informa-
tion-theoretic point of view. Here, information entropy (SAR
information content) would be highest if potency values were
randomly distributed over a chemical reference space—and
thus be essentially unpredictable. Similarly, in activity land-
scapes, activity cliffs that represent the extreme form of SAR
discontinuity are generally thought to represent regions of
highest SAR information content'* because small structural
changes cause large differences in the biological response.
Compounds forming activity cliffs reveal substitution sites
critical for compound potency but not necessarily trends that
help to understand how to further improve an active com-
pound. Accordingly, there is an apparent discrepancy between
high SAR information content associated with activity cliffs
or “information-rich” potency value distributions on one side
and chemical interpretability of SAR features (and SAR
modeling) on the other. Accordingly, for the purpose of
activity landscape analysis, we need to distinguish between
chemical accessible and interpretable SAR information and
different levels of SAR information content associated with
activity cliff regions. This also implies that approaches to
bridge between SAR continuity and discontinuity should be
useful to sample SAR information from rather different points
of view, as further discussed later on.

The Similarity Caveat

Activity landscape design only requires compound similar-
ity relationships and potency values as input. While potency
values are obtained from experiment, molecular similarity
needs to be calculated. Although potency data are frequently
affected by measurement errors, the assessment of molecular
similarity presents the most critical variable for landscape
modeling and a major source of potential inconsistencies in
describing and comparing activity landscapes. In computa-
tional medicinal chemistry, compound similarity is evaluated
in different ways. For example, in the context of pharmaco-
phore or QSAR analysis, local similarity measures are typi-
cally applied by focusing on arrangements of substructures or
functional groups in molecules that are activity determinants.
By contrast, methods that conceptually rely on the “similarity
property principle” (i.e., similar molecules should have similar
biological properties)>' employ whole-molecule similarity
measures. This is usually also the case in activity landscape
modeling (except if only series of closely related analogues are
studied). Importantly, the assessment of whole-molecule
similarity is significantly influenced by the molecular repre-
sentations that are chosen (usually more so than by alternative
similarity or distance metrics). Alternative molecular repre-
sentations such as, for example, different fingerprints or
combinations of different numerical molecular property
descriptors, correspond to different chemical reference spaces.
Similarity relationships are typically space-dependent and
might vary considerably by moving from one reference space
into another. Such variations can significantly change the
topology of activity landscapes and their information content.
For example, high-resolution descriptors that overemphasize
small chemical changes might flatten, or even eliminate,
activity cliffs that are found in chemically more realistic
reference spaces. In addition, compounds that are similar in
one feature space might be considered dissimilar when differ-
ent properties are evaluated. Consequently, activity cliffs have
been studied in alternative chemical space representations in
order to identify “consensus activity cliffs” that are consistently
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formed in different reference spaces.” From a medicinal
chemistry point of view, such cliffs would certainly be regarded
as the most reliable ones. However, one should also consider
that the application of consensus similarity or consensus
scoring methods might often lead to eliminating data from
further consideration that are (perhaps inappropriately) dis-
favored by an individual method. Nevertheless, the search for
activity cliffs that are formed in landscapes resulting from
different molecular representations and/or similarity methods
is an attractive approach.

Importantly, as further illustrated below, we need to take
into account that alternative molecular representations might
profoundly change similarity relationships and affect the
topology and interpretability of activity landscape models,
much more so than limited experimental errors in potency
measurements.

Numerical SAR Analysis Functions

Large-scale analysis of SAR features contained in com-
pound data sets has been facilitated through the introduction
of numerical SAR analysis functions including the SAR
index (SARI)'>?? and the structure—activity landscape index
(SALI)24 reported by Guha and van Drie (having its origins
also in the former Upjohn-Pharmacia environment®*). These
analysis functions systematically evaluate, and score, pairwise
similarity and compound potency relationships in compound
datasets and thus directly access and mirror activity landscape
features.

SARI is composed of two separately calculated scores, the
continuity score and the discontinuity score. The raw con-
tinuity score is calculated as the potency weighted arithmetic
mean of pairwise compound dissimilarity within a set 4. The
continuity score strongly weights structurally diverse com-
pounds having high potency and small differences in potency.
Thus, it accounts for gently sloped regions of an activity
landscape:

1
contyw(A) = weighted mean (7)
- (G ez \1+sim(i.j)

1
weight(i, /) 7>
{(u.»gm‘#} ( (1 +sim(i,))

> weight(i,))
{(i,)) € Ali}

) o P;-P;
weight(i,j) = TPl |P—] P (2)
i~ 1L

where P stands for potency and sim(7,j) for the similarity of
compounds i and j (that is usually calculated as Tanimoto
similarity of fingerprint representations).

The raw discontinuity score is calculated as the average
pairwise potency difference between compounds multiplied
by pairwise similarity:

disCraw(A4) = (|P; = Pyl -sim(i, )

3)

The discontinuity score emphasizes structurally similar
compounds with large potency differences and hence accounts
for rugged regions of an activity landscapes and activity cliffs.
Because the discontinuity score is designed to monitor the

~ mean
{(i’j) EA|Slm(i,j)>T, |P/ - P/‘>l}
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presence of activity cliffs, only pairs of compounds with at
least 1 order of magnitude difference in potency and a
similarity exceeding a predefined threshold 7" are considered.

The raw scores are converted into Z-scores using the score
distribution of a reference panel of compound sets.'> Then
Z-scores are mapped onto the value range [0,1] by calculating
the cumulative probability for each Z-score under the assump-
tion of a normal distribution. The resulting (normalized)
continuity and discontinuity scores are combined to yield
the SARI value:

SARI(A) = 3 (contuemm(4) + (1 = discrorm(4))) (4
The final SARI score balances SAR continuity and dis-
continuity contributions. In its original implementation, it
was applied to quantify the global SAR character of com-
pound data sets and classify global SARs into three categories;
i.e. continuous (high SARI scores), discontinuous (low
scores), or heterogeneous (intermediate scores around 0.5)
SARs. Extensive profiling of different sets of active com-
pounds revealed that the majority of global SARs are hetero-
geneous in nature,'> consistent with the presence of variable
activity landscapes, as illustrated in Figure 2c. Such SAR
heterogeneity can arise from the mutual coexistence of con-
tinuous and discontinuous SARs in different compound
subsets or from the presence of continuity in the vicinity of
an activity cliff (for example, when structural variations in
active compounds are permitted as long as one or more strong
binding constraints are met).

Importantly, SARI discontinuity scoring can also be car-
ried out on a per-compound basis, yielding a “local”, rather
than “global”, score. Compound discontinuity score calcula-
tion is carried out by comparing a compound to all other
molecules that are more similar to it than the predefined
threshold 7. Scores are normalized by using the individual
scores of all compounds in the data set as a reference for
Z-score calculations (instead of an external reference panel).>
The compound SARI discontinuity score then accounts for
contributions of individual compounds to the introduction of
local SAR discontinuity.

The SALI scoring scheme is designed to quantify activity
cliffs and calculated as follows:

Pi— P

SALI(i,j) = T—sim(i,))

()

Thus, SALI essentially corresponds to the SARI disconti-
nuity score. Differences between this and the SARI disconti-
nuity score include that SALI is a pairwise score with infinite
value range that emphasizes large potency differences between
similar compounds, whereas the SARI discontinuity score
takes average potency differences of all pairs of similar
compounds into account and is normalized. Because of their
local nature, average SALI scores can not be utilized as a
measure of SAR heterogeneity. For this purpose, a global
scoring scheme must be applied.

Activity Cliff-centric Landscape Views

The SALI formalism can be elegantly applied to produce
activity cliff-centric representations of activity landscapes. In
SALI graph representations, nodes represent compounds and
edges activity cliffs, i.e. two compounds are connected if their
SALI score exceeds a predefined threshold value (i.e., greater
than 50%, 60%, 70%, ... of all scores).>* Then, activity cliffs of
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Figure 3. Schematic SALI graph representation. Compounds are
displayed as nodes and labeled with identifiers. Pairs of compounds
are connected by an edge if their SALI value exceeds a user-specified
threshold. Edges are directed according to increasing compound
potency. With an increasing SALI score level threshold, only a few
edges remain (red) that connect compound pairs, forming the most
significant activity cliffs in the data set.

increasing magnitude can be identified. Edges are directed
according to increasing compound potency. Figure 3 shows a
prototypic SALI map. Calculation of graph representations at
increasing SALI score threshold levels identifies series of
pairwise connected activity cliffs that might often represent
compound optimization pathways, an attractive application
for medicinal chemistry. The SALI score threshold is critical
for a meaningful assessment of activity cliffs. If it is set to low
values, a data set is considered to contain a continuum of
activity cliffs.

Another elegant application of the SALI approach is to
analyze how many edges in a SALI graph (i.e., activity cliffs)
are correctly accounted for by different SAR models.>> This
type of analysis makes it possible to prioritize alternative
computational models for application to compound data sets
containing different SAR information. For this purpose, a
SALI curve is generated that reports the fraction of correctly
predicted pairwise compound potency relationships (directed
edges) as a function of the SALI map score threshold value.
The more directed edges are predicted by a given model at
increasing activity cliff stringency, the better it is suited for
handling the data set. Like any activity landscape analysis, this
assessment is also influenced by the chosen molecular repre-
sentations and similarity methods.

Gubha recently also proposed a modification of the SALI
formalism by taking compound dose—response behavior into
account instead of single-point potency measurements.”® This
can be accomplished by replacing potency differences in the
numerator of the SALI formula with the Euclidian distance
between Hill equation parameters of dose—response curves of
the compared compounds. The modification is thought to
further refine the description of activity cliffs of moderate
magnitude.®

Activity Cliff Distribution

As discussed above, the formation of activity cliffs in
compound data sets can well be considered a continuum, but
activity landscape analysis primarily focuses on identifying the
most prominent cliffs. Systematic activity landscape analyses
have revealed that most, if not all, sets of active compounds,
also including screening data sets, contain activity cliffs of
moderate to large magnitude.”*?” The formation of activity
cliffs in series of structurally similar compounds generally
results from different R-groups (substitutions). Hence, one
might ask the question whether chemical substitutions exist
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Figure 4. Activity-cliff inducing chemical substitutions and molecular scaffolds. (a) R-group replacements that frequently induce activity cliffs
in different structural environments and across diverse biological targets are annotated with molecular property changes they correspond to.
(b) Shown are three representative scaffolds that are contained in different compound pairs forming activity cliffs for multiple targets.

that display a general tendency to introduce activity cliffs.
Considering the general requirements of productive receptor—
ligand interactions, it would probably be expected that sub-
stitutions that, for example, introduce opposite charges or
hydrophobic groups of different size might be frequent activity
cliff inducers. Indeed, a systematic analysis of activity cliff-
inducing substitutions on the basis of matched molecular
pairs®® identified ~200 R-group replacements having a general
tendency to form activity cliffs in different compound classes
active against different targets.” Figure 4a shows representa-
tive examples of such substitutions. It is important to note that
activity cliff-forming substitutions are derived here exclusively
on the basis of compound structure and potency comparisons,
which does not take structural insights into receptor—ligand
interaction into account. Of course, activity cliffs could also be
rationalized on the basis of complex crystal structures of
analogue series, although the structural approach would
essentially be target-centric (and there is much less information
available). Nevertheless, on a case-by-case basis, structural
interaction analysis can rationalize activity cliff formation at
the atomic level of detail.

In light of the strong focus on substitution patterns for
activity cliff formation, a perhaps much less obvious question
has been whether molecular frameworks (core structures)
might also exist that frequently introduce activity cliffs. To
address this question, active compounds representing unique
molecular scaffolds have been systematically analyzed for their
ability to form activity cliffs against different targets.> In this
study, more than 100 scaffolds of varying chemical complexity
have been identified that form significant cliffs across multiple
(related or unrelated) targets. Representative examples are
shown in Figure 4b. Taken together, these findings suggest
that much can still be learned about the structural origins of
activity cliff formation. Such insights would be expected to aid
in the selection of compounds for chemical exploration (e.g.,
by identifying compounds representing preferred activity cliff
scaffolds) and the design of optimization strategies (e.g., by
evaluating substitutions having high cliff probability).

Global versus Local SARs

A landscape view that conceptually differs from SALI maps
is provided by network-like similarity graphs (NSGs).>* Here,

the focus is on exploring relationships between the global SAR
character of a compound data set and local SAR features. An
exemplary NSG is shown in Figure 5a. Nodes represent
compounds and are color-coded according to their potency
values and edges represent similarity relationships (an edge is
drawn between two nodes if their calculated pairwise 2D
similarity exceeds a predefined threshold value). The size of
nodes is scaled according to compound discontinuity scores.
In addition to calculating pairwise similarity relationships,
hierarchical clustering of the data set is carried out and the
resulting clusters are highlighted. For each cluster, a cluster
discontinuity score is also calculated. The relative arrange-
ment of clusters to each other has no chemical meaning and is
determined by a graphical layout algorithm. NSGs also
provide an intuitive access to activity cliffs. Large red and
green nodes connected by edges are activity cliff markers and
indicate the most significant cliffs contained in a data set.
Moreover, NSGs identify different local SAR environments.
For example, the squalene synthase inhibitor set in Figure 5a
is globally heterogeneous on the basis of SARI profiling, and
the NSG reveals the presence of both strongly continuous and
discontinuous compound clusters. By contrast, the thrombin
inhibitor set shown in Figure 5b is characterized by significant
global SAR discontinuity and, accordingly, its NSG shows
the presence of many large red and green nodes that dominate
the activity landscape. Hence, in addition to activity cliffs,
NSGs provide an immediate access to different local SARs in
compound data sets. Furthermore, NSGs can also be used to
search for SAR information in raw screening data.’” An
example is shown in Figure Sc. For the analysis of screening
data, confirmatory screens are preferred because of their
reduced error rates. Hit sets from screening campaigns typi-
cally consist of many predominantly weakly active and often
structurally diverse compounds, which corresponds to the
presence of SAR continuity on a global scale. However, a
lesson learned from profiling many screening sets is that the
activity landscapes of essentially all of these data sets contain
regions (compound subsets) of SAR discontinuity,?’ as illu-
strated in Figure Sc. These regions often provide focal points
for hit selection. Although NSG analysis is readily applicable
to screening data, and usually informative in these cases,
conclusions about local SARs are of course only meaningful
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Figure 5. Network-like similarity graphs. (a) An NSG is shown for a set of 71 squalene synthase inhibitors. Nodes represent individual
compounds and node colors reflect compound potency, as indicated by the color bar in the lower left corner. Edges indicate compound
similarity relationships computed from 2D fingerprint representations. Node size is scaled according to compound discontinuity scores.
Clusters of compounds are highlighted and annotated with cluster discontinuity scores. On the right, the two molecules are shown that form an
activity cliff. The relative orientation of and distances between clusters are determined by a graphical layout algorithm. (b) NSG for a set of 172
thrombin inhibitors. Node and cluster annotations are analogous to (a). Parts (a) and (b) have been adapted from ref 23. (¢) NSG for a set of
1379 cytochrome P450 isoform 2C19 screening hits (inhibitors). A compound pathway is highlighted. (d) Details of this pathway are shownina
similarity—potency diagram. The pathway is leading from a continuous local SAR to a discontinuous region. Compound 6 forms an activity

cliff with compound 7 that is not part of the pathway.

if test compounds share the same specific activity. This would
not be the case, for example, if it is not clear whether active
compounds are receptor agonists or antagonists and when
data sets contain mixtures of such compounds.

In Figure Sc, a compound path is highlighted that leads
from a region of local SAR continuity to an activity cliff in a
discontinuous region. This so-called “SAR pathway”?’ is
represented in detail in Figure 5d. SAR pathways are based
on a predefined SAR model and can be systematically com-
puted for NSGs and ranked on the basis of their fit to the SAR
model. This model prioritizes pathways that span a large
potency interval between start and end compound and consist
of as many as possible pairwise similar compounds following
anideally linear potency gradient with small potency increases
between subsequent compounds. As such, the pathway model
is designed to reflect SAR continuity. However, pathways can
be identified that connect regions of SAR continuity to
activity cliffs (by definition only a potent cliff marker can be

the end point of the pathway), as shown in Figure 5d. The
corresponding sequences of pairwise similar compounds may
or may not represent compound optimization paths, but they
provide a “chemical link” between SAR continuity and dis-
continuity. Because SAR pathways are intrinsically contin-
uous in nature, they often provide interpretable information.

From Activity to Selectivity Cliffs

The NSG framework can also be utilized to study multi-
target SARs resulting from compounds with activity against
two or more targets. In this case, target selectivity of com-
pounds results from different potencies against individual
targets. In addition to the potency-based NSGs discussed
above, selectivity-based NSGs can also be generated by using
potency ratios (logarithmic potency differences) for two
targets instead of individual compound potency values.®!
Figure 6a shows two potency-based NSGs for compounds
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targets. (b) Corresponding local SAR and SSR environments from potency and selectivity NSGs for a set of 159 ligands active against
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potency and resulting selectivity for the two targets.

that inhibit both cathepsin K and L thiol proteases and the
corresponding selectivity-based NSG. This representation
makes it possible to study structure—selectivity relationships
(SSRs).%! The topology of the potency- and selectivity-based
NSGs is the same because it is only determined by compound
similarity relationships. In selectivity-based NSGs, com-
pounds are color-coded according to the (logarithmic) selec-
tivity range calculated for the data set. Here, combinations of
large red and green nodes now represent “selectivity cliffs”, i.e.
compounds having markedly different selectivity against the
two targets. As illustrated in Figure 6a, local SSR environ-
ments can be analyzed in selectivity-based NSGs (in analogy
to local SAR environments). Structurally similar compounds
in the vicinity of selectivity cliffs often reveal selectivity
determinants, i.e. substitutions that significantly change
relative potencies against the two targets.’! Another attractive
aspect of comparing potency- and selectivity-based NSGs
is the exploration of relationships between activity and

selectivity cliffs. Figure 6b shows corresponding local SAR
and SSR environments from potency and selectivity NSGs of
inhibitors of cathepsin B and L.>' The example at the top in
Figure 6b shows two compounds that participate in the
formation of a discontinuous local SAR in the cathepsin L
NSG where they form a moderately sized activity cliff. By
contrast, the same compounds represent a continuous SAR in
the corresponding region of the cathepsin B NSG. Moreover,
the resulting local SSR environment in the selectivity NSG is
characterized by strong discontinuity, and the two com-
pounds form a steep selectivity cliff. Thus, in this case, activity
cliff markers for cathepsin L, but not B, also form a selectivity
cliff. The example at the bottom in Figure 6b shows a different
relationship. In this case, two inhibitors of cathepsin L and B
map to continuous local SAR regions in both potency NSGs,
but the corresponding local SSR environment is discontinu-
ous and the two compounds form a moderately sized
selectivity cliff. Hence, depending on the potency ratios of
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Figure 8. Detailed 3D activity landscapes. (a) For a set of 112 acetylcholinesterase inhibitors represented as MACCS fingerprints, a detailed
3D activity landscape is shown and compared to the underlying 2D representation obtained by dimension reduction. Distinct regions of the 3D
landscape are annotated and further discussed in the text. (b) 3D activity landscapes based on Molprint2D fingerprint representations are
shown for sets of 252 and 146 inhibitors of lipoxygenase and protein farnesyltransferase, respectively. The activity landscape for lipoxygenase is
characterized by overall SAR continuity, whereas the landscape for protein farnesyltransferase reveals a high degree of SAR discontinuity
contained in this data set. (¢) For the set of acetylcholinesterase inhibitors used in (a), landscapes are generated with alternative TGT and
Molprint2D fingerprint representations. The positions of three compounds are mapped and their potency is reported. Depending on the
molecular representation, the topology of the landscapes changes and the compounds form, or do not form, activity cliffs. The figure has been

adapted from ref 33.

compounds active against two targets, activity cliff markers
and compounds that do not form activity cliffs may or may not
form selectivity cliffs. Accordingly, in the context of multi-
target SARs, variable relationships between activity and selec-
tivity cliffs exist.

Compound-Centric Landscape Views

In NSGs, compound similarity relationships are accounted
for by building a global network structure from individual
pairwise compound comparisons. Different from this ap-
proach, compound-centric landscape views can also be gen-
erated that define a single compound as a structural reference
so that it is possible to describe the “coordinates” of all other
compounds in a data set relative to this reference point in

chemical space. An example for an SAR analysis method that
relies on a compound-centric data view is provided by simi-
larity-potency trees (SPTs).*? Like NSGs, SPTs are graph-
based data structures, i.e. colored nodes represent compounds
and their potency values and edges indicate similarity relation-
ships (node scaling is not applied here). However, SPTs focus
on local SARs and a unique feature is that they represent a
compound hierarchy as a tree based on similarity to the
reference compound (Figure 7a). The reference compound
at the top of the hierarchy forms the root of the tree. From top
to bottom, the similarity of the compounds to the reference
compound decreases until a minimum similarity threshold is
reached. Edges connect compounds that are structurally most
similar to each other (i.e., nearest neighbors). Accordingly,
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gradual structural modifications of the reference compound
and their effect on potency are visualized. To simplify the
identification of SAR trends, children of the same parent
compound are sorted by increasing potency from left to right.

A question associated with a compound-centric view of an
activity landscape is how to best select a compound as the
reference. In SPT analysis, one attempts to identify trees that
simplify SAR analysis. To avoid the a priori definition of an
SAR model, each compound in a given data set is selected
once as a reference to calculate an SPT. After this complete set
of SPTs has been generated, the data structures are ranked
based on their predefined SAR information content.*> By
systematically exploring all possible reference compounds, no
SAR information is lost. In Figure 7a, two exemplary SPTs of
a set of factor Xa inhibitors are shown that display different
levels of SAR information. The tree at the top contains many
compounds exceeding the minimum similarity threshold to
the reference molecule, and their potency values are distrib-
uted following a fairly regular pattern. Most compounds have
multiple children with different potency. These children can be
readily compared to elucidate structural modifications that
influence the compound potency. By contrast, the tree at the
bottom in Figure 7a conveys only little SAR information. It
consists of a small number of compounds that all have low and
nearly invariant potency values.

The effects of reference compound selection on the inter-
pretability of SPTs are illustrated in Figure 7b. Both of the
trees that are shown consist of nearly identical compound sets.
But the selection of compounds 1 and 2 as respective root
nodes results in different potency distributions. The tree
shown at the top (rooted at compound 1) does not exhibit
obvious patterns in the distribution of potency values. By
contrast, in the tree at the bottom (rooted at compound 2),
potency tends to increase from left to right on each tree level,
although the compounds are not connected to the same
parent. This indicates that compounds with high potency tend
to have highly potent children. Because potency levels are
generally retained when moving down along this SPT, SAR
analysis becomes feasible. Thus, SPTs are designed to focus
SAR exploration on local regions of an activity landscape
with evident SAR patterns and to organize compounds in
these regions in an interpretable manner.

Detailed 3D Activity Landscapes

The idealized schematic 3D landscape views discussed
above provide an intuitive basis to rationalize principal
SAR phenotypes. Of course, one would also be interested
in generating such 3D activity landscapes for actual data sets
and study their topology. In a recent study, this has been
attempted.*® Following this approach, coordinate-free chem-
ical reference spaces are generated for compound data sets
based on pairwise distances between fingerprint representa-
tions. Then 2D projections of these reference spaces are
calculated using multidimensional scaling®® as a dimension
reduction technique and compound positions are mapped
onto the x—y plane of a coordinate system. Compound
potency values are reported on the z-axis. To obtain a
contiguous activity surface from sparsely distributed com-
pound potency data, interpolation functions are applied.
Figure 8a shows an exemplary 3D landscape for a set of
acetylcholinesterase inhibitors and the 2D projection from
which it is derived. As the molecular representation, MACCS
structural keys®> are used. The activity surface is color-coded
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according to surface elevation by applying a continuous
(green to red) spectrum. Interpolated surface area is displayed
in white. In this case, closely corresponding 2D and 3D
representations of an activity landscape can be compared
and the positions of activity cliffs and other compounds can
be mapped. In comparison to idealized 3D landscape models,
3D activity landscapes of compound data sets typically
contain many more peaks that are often, however, not
significant cliffs. Rather, small peaks are a consequence of
dense local data sampling and are hence termed “data peaks”
(Figure 8a). Because of the surface elevation-dependent color
scheme, activity cliffs of significant magnitude appear in red.
As shown in Figure 8a, activity cliffs can also be identified in
the 2D projection of chemical reference space at intersections
of red and green areas, but the 3D landscape adds topological
information about cliffs. For example, it differentiates steep
peaks from activity plateaus that are formed by multiple
compounds. From 3D landscape views of different data sets,
SAR characteristics can indeed be deduced. For example,
Figure 8b shows the comparison of activity landscapes of sets
of lipoxygenase and farnesyltransferase inhibitors that are
characterized by strong SAR continuity and discontinuity,
respectively. In this case, an atom environment fingerprint
(Molprint2D)*¢ is used to represent the test compounds, and
the activity landscapes are produced using a common refer-
ence coordinate system (making them directly comparable).
By comparing these landscapes, differences in global SAR
character become immediately apparent. The lipoxygenase
inhibitor landscape has a somewhat rugged surface due to the
presence of many data peaks (see above) but is overall gently
sloped and does not display activity cliffs. By contrast, the
farnesyltransferase inhibitor landscape is characterized by
the presence of many activity cliffs.

Considering the general similarity caveat, we can also study
the effects of using different molecular representations on
the topology of 3D activity landscapes. Figure 8c shows a
comparison of two landscapes calculated for the acetylcho-
linesterase inhibitor set using alternative molecular
representations, i.e. Molprint2D and a 2D pharmacophore
fingerprint (TGT).” These two landscapes differ significantly,
which illustrates the strong influence of chosen molecular
representations (and chemical reference spaces) on the nature
of calculated similarity relationships and ensuing SARs. For
example, as illustrated in Figure 8c, activity cliffs that are
apparent in one landscape might be substantially altered, or
even absent, in another, and landscape topology might vary
greatly. This is not an intrinsic limitation of 3D landscape
modeling, but rather a phenomenon that affects all types of
computational SAR analysis. In fact, the influence of chosen
molecular representations on landscape topology can be
utilized as a diagnostic tool to visualize and assess how
different representations alter SAR features of compound
data sets. For this purpose, alternative landscapes can be
readily computed and compared.*® For example, if a com-
pound data set should be subjected to QSAR modeling, it
would make sense to evaluate alternative activity landscapes
generated using different types of descriptors and select
representations that induce a higher degree of SAR con-
tinuity than others. Although the 3D landscapes discussed
herein are based on fingerprint representations, they can
also be generated from real-valued molecular descriptor
spaces using dimension reduction techniques such as prin-
cipal component analysis.*®
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SAR Determinants in Analogue Series

The landscape views described so far are applicable to large
data sets of different composition. However, in advanced
stages of compound design, optimization efforts are typically
focused on a small part of activity landscapes populated by
analogues of a single chemotype. Therefore, for the study of
analogue series, different types of activity landscape models
can be envisioned. For example, a hierarchical tree-like data
structure termed a combinatorial analogue graph (CAG) has
been introduced to systematically organize analogue series
according to substitution patterns (on the basis of R-group
decomposition) and assess the degree of SAR discontinuity
that substitutions at defined sites, and their combination,
introduce (Figure 9a).*® For this purpose, it is also meaningful
to depart from the assessment of whole-molecule similarity
utilized in other landscape representations and evaluate local
similarity focusing on R-group patterns. To these ends,
pharmacophore edit distances have recently been applied to
compare analogues exclusively by the similarity of their
substituents.” In CAGs, nodes correspond to compound
subsets with substitutions at defined sites or site combina-
tions. Node labels identify the substitution sites at which the
analogue pairs of a given node (subset) differ. Edges connect
subsets that share modifications at one or more substitution
sites. Nodes are further annotated by their normalized dis-
continuity scores that are also reflected by the color code using
a continuous color spectrum from green (low discontinuity) to
red (high discontinuity). At the top of Figure 9a, a CAG is
shown for six analogues active against cyclin-dependent
kinase 4 having three variable substitution sites that illustrates
the assignment of compound pairs to corresponding subsets.
As can be seen, the discontinuity score is highest for pairs of
compounds that differ at site 1. Hence, this site constitutes a
so-called “SAR hotspot”. Here, changes are most likely to
introduce SAR discontinuity and produce compounds with
large differences in potency. Furthermore, the modification of
site 1 in combination with substituent exchanges at other
positions also generates SAR discontinuity, as reflected by the
red nodes 1—2 and 1—3. As analogue sets grow in size, more
substituent positions can be explored, as shown for a series of
36 cytochrome P450 3A4 inhibitors at the bottom of
Figure 9a. This CAG representation identifies the substitution
sites 1, 2, and 6 as SAR hotspots. Furthermore, it reveals
“SAR holes”, i.e. combinations of substitution sites, that have
not yet been explored. Hence, useful suggestions which com-
pounds to synthesize next and how to complement a current
series can be derived from considering relationships between
SAR holes and hotspots.

CAGs have also been applied to study multitarget SARs.>
Figure 9b shows corresponding CAGs for a series of 18
inhibitors with three variable substitution sites that are active
against the four serine proteases factor Xa, thrombin, uroki-
nase, and trypsin. It is evident that factor Xa and thrombin
show very similar patterns of SAR discontinuity. In both
cases, site 1 is mainly responsible for the formation of activity
cliffs whereas for urokinase, sites 2 and 3 are SAR hotspots.
By contrast, the CAG representation for trypsin is character-
ized by overall low SAR discontinuity. SAR hotspots that are
unique to one or few targets provide the opportunity to
selectively alter the potency of analogues for individual tar-
gets. Taken together, CAGs integrate information about
potency changes with a local view on compound similarity
and provide immediate access to substitution sites most
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relevant for changes in compound potency or selectivity. They
provide a compound organization and view of small sections
of activity landscapes centered on a given chemotype.

Activity Landscape Analysis for Medicinal Chemistry

Herein we have discussed alternative ways to conceptualize
and represent activity landscapes for compound data sets.
Implementations of most of the activity landscape methods
discussed herein are freely available to the scientific commu-
nity (as specified in the original publications). All activity
landscape software tools developed in our laboratory can be
obtained via the download section of our Web site (http://
www.lifescienceinformatics.uni-bonn.de), some also in inte-
grated form as part of the SARANEA program.*’ The
interpretability of landscape models is generally supported
by interactively associating compound nodes with 2D depic-
tions of compound structures. Common features of all land-
scape models include that they are based on systematic
comparisons of compound similarity and potency relation-
ships and that they are designed to reveal SAR characteristics.
However, details and specific purposes of the activity land-
scape models presented herein differ considerably and there
might well be individual preferences for one or the other
model. Activity landscapes are only one of many ways to
model and analyze SARs. From our point of view, particu-
larly important aspects of the activity landscape approach
include that: (i) intuitive graphical access to SAR character-
istics is provided at varying levels of complexity, (ii) global
and local SAR features can be related to each other for
(iii) compound data sets of increasing size, (iv) regardless of
their structural homogeneity, (v) it provides a basis for
chemical interpretation, but does not attempt to replace it.

How might such activity landscape representations aid in
practical medicinal chemistry applications? A characteristic
feature of landscape modeling is that it is not predictive but
descriptive in nature. Activity landscapes of data sets of
different composition help to view SAR information in con-
text. One can quickly understand to what extent a data set
contains SAR information. If it does, it is possible to focus on
compound subsets displaying characteristic local SAR fea-
tures and spot prominent activity cliffs. As such, landscape
views aid in compound selection. Supported by numerical
analysis functions, compound subsets corresponding to
regions of high SAR discontinuity (SARI) or activity cliff
patterns (SALI) can easily be identified. Although there is
usually strong emphasis on the identification of activity cliffs
in landscape analysis, cliffs do not necessarily provide inter-
pretable SAR information, as we have discussed. Hence, it is
equally important to inspect different compound subsets in
regions of apparent SAR continuity and discontinuity and
search for interpretable SAR information. Landscape repre-
sentations such as NSGs can be mined for compound path-
ways that connect continuous and discontinuous SAR regions
in data sets, which further aids in the search for interpretable
information. It is also possible to identify compound subsets
in activity landscapes that have already been thoroughly
explored without revealing significant SAR discontinuity,
which should help to deprioritize “flat” SARs. Taken
together, graphical access to SAR information at the level of
whole data sets and compound subsets, the evaluation of SAR
patterns, and the identification of key compounds that induce
local SARs are major aspects of activity landscape analysis for
medicinal chemistry applications.
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Figure 9. Combinatorial analogue graphs. (a) CAG representations for six and 35 analogues active against the protein targets cyclin-
dependent kinase 4 (CDK4) and cytochrome P450 3A4 (CYP P450 3A4), respectively, are shown. For the CDK4 inhibitors, substituents of the
individual compounds and the assignment of compound pairs to corresponding nodes are reported. SAR holes in the CAG representation for
CYP P450 3A4 are circled in blue. (b) For a series of 18 compounds active against the serine proteases factor Xa, thrombin, urokinase, and
trypsin, the four corresponding CAG representations are shown. Different SAR hotspots are detected that can be exploited in the design of

potent and selective analogues.
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Conclusions and Outlook

Activity landscape representations are attractive tools to
access SAR information contained in compound data sets of
any source. Landscape analysis is best applied to moderately
sized compound data sets. If data sets are very large, network-
based landscape views become difficult to analyze graphically.
If data sets are very small (i.e., containing only tens of
compounds), landscape views are not required to analyze
SAR information. However, even for data sets containing
only on the order of 50—100 compounds, landscape models
can be readily generated and are often very informative. The
description of activity landscapes principally relies on system-
atic comparisons of compound similarity and potency and
graphical representations of the results. Although the concept
of activity landscapes has been introduced already a number of
years ago, until recently only very few studies describing
landscape models had been reported. However, catalyzed by
the introduction of numerical SAR analysis functions that
depart from the classical QSAR paradigm and the introduc-
tion of molecular network representations, several 2D and 3D
activity landscape models have recently been reported. These
models present activity landscapes in rather different ways and
provide alternative view points to intuitively access and com-
pare global and local SAR features. However, in particular the
modeling of 3D landscapes is still in its infancy and we expect
to see increasing efforts in the near future to derive detailed
landscapes for alternative molecular representations that uti-
lize different methodological frameworks. It is conceivable
that such landscape models will be used as diagnostics to test
the suitability of alternative chemical reference spaces to
capture SAR information. We also anticipate that interactive
activity landscape modeling will become increasingly popular
for retrospective SAR exploration of historically grown and
increasingly large sets of active compounds. Landscape mod-
eling should help to monitor the evolution of compound data
sets in pharmaceutical settings.
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